Problem 1. Prove the existence of a bijection between $0 / 1$ strings of length n and the elements of $\mathcal{P}(S)$ where $|S|=n$

Definition. We define a function that maps every $0 / 1$ string of length n to each element of $\mathcal{P}(S)$. Let $f\left(a_{1} a_{2} \ldots a_{n}\right)$ be the subset of S that contains the i th element of S if $a_{i}=1$ and does not contain the i th element if $a_{i}=0$.

Lemma. (injectivity) If $a_{1} a_{2} \ldots a_{n} \neq b_{1} b_{2} \ldots b_{n}$, then $f\left(a_{1} a_{2} \ldots a_{n}\right) \neq f\left(b_{1} b_{2} \ldots b_{n}\right)$
Proof. If $a_{i} a_{2} \ldots a_{n} \neq b_{1} b_{2} \ldots b_{n}$, then there is some i such that $a_{i} \neq b_{i}$. Therefore, for this i, the i th element is either in $f\left(a_{1} a_{2} \ldots a_{n}\right)$ or in $f\left(b_{1} b_{2} \ldots b_{n}\right)$, but not both. Since the sets must differ by at least one element, they must be different sets.

Lemma. (surjectivity) For every subset of S, there exists some $0 / 1$ string of length n that is mapped to it.

Proof. Let A be a subset $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ with k elements. Define x to be the $0 / 1$ string $x_{1} x_{2} \ldots x_{n}$, where $x_{i}=1$ if the i th element is in A and 0 otherwise. Then for every $A \subseteq \mathrm{~S}, \exists x$ such that $f(x)=A$.

Theorem. There exists a bijection from $\{0,1\}^{n} \rightarrow \mathcal{P}(S)$, where $|S|=n$.
Proof. We have defined a function $f:\{0,1\}^{n} \rightarrow \mathcal{P}(S)$. Because f is injective and surjective, it is bijective.

Problem 2. Prove there exists a bijection between the natural numbers and the integers
Definition. Consider the following function that maps \mathbb{N} to \mathbb{Z} :

$$
f(n)= \begin{cases}\frac{n}{2} & \text { if } \mathrm{n} \text { is even } \\ \frac{-(n+1)}{2} & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

Lemma. (injectivity) If $a \neq b$, then $f(a) \neq f(b)$.
Proof. Suppose that $a \neq b$ but $f(a)=f(b)$. Then $f(a)$ and $f(b)$ must have the same sign. Therefore, either $f(a)=\frac{a}{2}$ and $f(b)=\frac{b}{2}$ or $f(a)=\frac{-(a+1)}{2}$ and $f(b)=\frac{-(b+1)}{2}$. In both cases, solving for a and b gives $a=b$.

Lemma. (surjectivity) $\forall y \in \mathbb{Z}$, there exists some $x \in \mathbb{N}$ for which $f(x)=y$
Proof. If y is positive, then $f(2 y)=y$ and y has a "pre-image" equal to $2 y$.
If y is negative, then $f(-(2 y+1))=y$, and y has a "pre-image" equal to $-(2 y+1)$.
Theorem. There exists a bijection between \mathbb{N}, the natural numbers, and \mathbb{Z}, the integers.
Proof. We have shown $f: \mathbb{N} \rightarrow \mathbb{Z}$ is injective and surjective. Therefore it is bijective.
Problem. You want to buy 10 donuts from a shop that provides four flavors: french vanilla, garlic, java chip, and almond joy. Let f, g, j, and a denote the number of each type of donut you buy. Prove the number of ways to buy 10 donuts from four flavors is equal to the number of $0 / 1$ strings of length 13 that contain exactly three 1 s .

Remark. We have two constraints. First, $f, g, j, a \geq 0$. Second, $f+g+j+a=10$.

Definition. Consider the following function h that maps length-13 $0 / 1$ strings with exactly three 1 s to ways to buy 10 donuts from four flavors:

$$
h\left(a_{1} a_{2} a_{3} \ldots a_{13}\right)=(f, g, j, a)
$$

where
f is the number of 0 s before the first 1
g is the number of 0 s between the first and second 1 s
j is the number of 0 s between the second and third 1 s
a is the number of 0 s after the third 1
Lemma. (injectivity) If $a_{1} a_{2} \ldots a_{13} \neq b_{1} b_{2} \ldots b_{13}$, then $h\left(a_{1} a_{2} \ldots a_{13}\right) \neq h\left(b_{1} b_{2} \ldots b_{13}\right)$
Proof. We provide an informal proof by contradiction. Assume $a_{1} a_{2} \ldots a_{13} \neq b_{1} b_{2} \ldots b_{13}$ but $h\left(a_{1} a_{2} \ldots a_{13}\right)=$ $h\left(b_{1} b_{2} \ldots b_{13}\right)$. Let $\left(f_{a}, g_{a}, j_{a}, a_{a}\right)=h\left(a_{1} a_{2} \ldots a_{13}\right)$ and $\left(f_{b}, g_{b}, j_{b}, a_{b}\right)=h\left(b_{1} b_{2} \ldots b_{13}\right)$. By our assumption, $f_{a}=f_{b}, g_{a}=g_{b}, j_{a}=j_{b}$, and $a_{a}=a_{b}$. This necessarily implies that $a_{1} a_{2} \ldots a_{13}$ and $b_{1} b_{2} \ldots b_{13}$ have the same number of 0 s before the first 1 , the same number of 0 s between the first and second 1 s , the same number of 0 s between the second and third 1 s , and the same number of 0 s after the third 1. This would mean that $a_{1} a_{2} \ldots a_{13}=b_{1} b_{2} \ldots b_{13}$, contradicting our initial assumption that $a_{1} a_{2} \ldots a_{13} \neq b_{1} b_{2} \ldots b_{13}$.

Lemma. (surjectivity) For every (f, g, j, a) there exists some length-13 0/1 string with exactly three $1 s$ that maps to it.

Proof. Assume you have a fixed (f, g, j, a). Construct a $0 / 1$ string as follows:
Write $f 0 \mathrm{~s}$, followed by a 1 , then $g 0 \mathrm{~s}$, followed by a 1 , then $j 0 \mathrm{~s}$, followed by a 1 , then a s. Then this string will be mapped to our fixed (f, g, j, a) with the function we defined.

Theorem 3. The number of ways to buy 10 donuts from four flavors is equal to the number of $0 / 1$ strings of length 13 that contain exactly three $1 s$.

Proof. Because h is injective and surjective, it is bijective. Because there exists a bijection between the number of ways to buy 10 donuts from four flavors and the number of $0 / 1$ strings of length 13 that contain exactly three 1 s , those numbers must be equal.

