Midterm Reference Sheet

This sheet contains helpful properties and definitions to be used throughout the exam. You do not need to cite any rules found here throughout your work. This is not comprehensive.

Logic

i. Disjunctive Normal Form: $(P \wedge Q) \vee(S \wedge R)$

- The disjunction (clauses ORed together) of conjunctions (literals ANDed together).
ii. Conjunctive Normal Form: $(P \vee Q) \wedge(S \vee R)$
- The conjunction (clauses ANDed together) of disjunctions (literals ORed together).

Logical Equivalences:

Identity Laws	Double Negation Law	Idempotent Laws	Distributive Laws
$p \wedge T \equiv p$	$\neg(\neg p) \equiv p$	$p \wedge p \equiv p$	$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
$p \vee F \equiv p$		$p \vee p \equiv p$	$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$

De Morgan's Laws	Absorption Laws	Definition of Conditional
$\neg(p \wedge q) \equiv \neg p \vee \neg q$	$p \vee(p \wedge q) \equiv p$	$p \rightarrow q \equiv \neg p \vee q$
$\neg(p \vee q) \equiv \neg p \wedge \neg q$	$p \wedge(p \vee q) \equiv p$	

Set Identities

1. Set Difference Law: For all sets A and $B, A \backslash B=A \cap \bar{B}$
2. Double Complement Law: For all sets $B, \overline{\bar{B}}=B$
3. Distributive Law: For all sets A, B, and C
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(b) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
4. Identity Law: For all sets A,
(a) $A \cup \emptyset=A$
(b) $A \cap U=A$
5. De Morgan's Law: For all sets A and B,
(a) $\overline{(A \cup B)}=\bar{A} \cap \bar{B}$
(b) $\overline{(A \cap B)}=\bar{A} \cup \bar{B}$

Relations and Functions

1. An equivalence relation is one that is reflexive, symmetric, and transitive.
2. A bijective function is one that is injective and surjective.
(a) A function $f: A \rightarrow B$ is injective if for any arbitrary $a, b \in A$, $f(a)=f(b) \rightarrow a=b$.
(b) A function $f: A \rightarrow B$ is surjective if, for all $b \in B$, there exists some $a \in A$ such that $f(a)=b$.

Number Theory

Definition 1: We say that a divides b, denoted $a \mid b$, when $b=k a$ for some $k \in \mathbb{Z}$.
Definition 2: We say that a is congruent to $b \bmod m$, denoted $a \equiv b(\bmod m)$, if $m \mid(b-a)$.

Properties of Congruence Relations:

For $a, b \in \mathbb{Z}$, if $a \equiv b(\bmod m)$,

1. $a+c \equiv b+c(\bmod m)$ for any $c \in \mathbb{Z}$
2. $a c \equiv b c(\bmod m)$ for any $c \in \mathbb{Z}$
3. $a^{n} \equiv b^{n}(\bmod m)$ for $n \in \mathbb{Z}^{+}$

If we also have $c \equiv d(\bmod m)$,

1. $a+c \equiv b+d(\bmod m)$
2. $a c \equiv b d(\bmod m)$

Theorem 1: For any $a, b \in \mathbb{Z}$ there exists $u, v \in \mathbb{Z}$ such that $a u+b v=\operatorname{gcd}(a, b)$.
Theorem 2: An integer is a linear combination of a and b if and only if it is a multiple of their gcd.

