Final Exam Reference Sheet

You do not need to cite any rules found here throughout your work. This is not comprehensive.

Logic

- Disjunctive Normal Form: a disjunction of conjunctions. EX: $(P \wedge Q) \vee(S \wedge R)$
- Conjunctive Normal Form: a conjunction of disjunctions. EX: $(P \vee Q) \wedge(S \vee R)$

Set Identities

1. Set Difference Law: For all sets A and $B, A \backslash B=A \cap \bar{B}$
2. Distributive Law: For all sets A, B, and C
(a) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(b) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
3. Identity Law: For all sets A,

$$
A \cup \emptyset=A, A \cap U=A
$$

4. De Morgan's Law: For all sets A and B,

$$
\overline{(A \cup B)}=\bar{A} \cap \bar{B}, \overline{(A \cap B)}=\bar{A} \cup \bar{B}
$$

Relations and Functions

1. A bijective function is one that is injective and surjective.
(a) A function $f: A \rightarrow B$ is injective if, for all $a, b \in A$, $f(a)=f(b) \rightarrow a=b$.
(b) A function $f: A \rightarrow B$ is surjective if, for all $b \in B$, there exists some $a \in A$ such that $f(a)=b$.

Number Theory

Definition 1: We say that a divides b, denoted $a \mid b$, when $b=k a$ for some $k \in \mathbb{Z}$.
Definition 2: We say that a is congruent to $b \bmod m$, denoted $a \equiv b(\bmod m)$, if $m \mid(b-a)$.

Properties of Congruence Relations

For $a, b \in \mathbb{Z}$, if $a \equiv b(\bmod m), a+c \equiv b+c(\bmod m)$ for any $c \in \mathbb{Z}$.
For $a, b \in \mathbb{Z}$, if $a \equiv b(\bmod m), a \times c \equiv b \times c(\bmod m)$ for any $c \in \mathbb{Z}$.

Counting

The binomial coefficient, also called n choose k, is defined to be, for $n \geq k$ and $n, k \in \mathbb{N}$,

$$
\binom{n}{k} \stackrel{\text { def }}{=} \frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}
$$

Stars and Bars: The number of ways to distribute m identical objects among n distinct groups is

$$
\binom{m+n-1}{n-1}
$$

Probability

Inclusion-Exclusion: For events A and $B, \operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$ The conditional probability $\operatorname{Pr}(A \mid B)$ is the probability that A happened given that we know B did. It is defined as

$$
\operatorname{Pr}(A \mid B) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}=\frac{\operatorname{Pr}(B \mid A) \cdot \operatorname{Pr}(A)}{\operatorname{Pr}(B)} \quad \text { (Bayes' Rule) }
$$

A is independent of B if $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$, or if $\operatorname{Pr}(B)=0$.
The expected value (or just expectation) of a random variable is a probabilityweighted average of its values. The expected value of a random variable $R: \Omega \rightarrow S$ is:

$$
\mathbb{E}[R]=\sum_{\omega \in S} R(\omega) \operatorname{Pr}(\omega)
$$

Variance

Definition. The variance $\operatorname{Var}[R]$ of a random variable R is defined to be

$$
\mathbb{E}\left[(R-\mathbb{E}[R])^{2}\right] \quad \text { or equivalently } \quad \mathbb{E}\left[R^{2}\right]-(\mathbb{E}[R])^{2} .
$$

Markov's Inequality: If R is a nonnegative random variable, then for all $x>0$,

$$
\operatorname{Pr}(R \geq x) \leq \frac{\mathbb{E}[R]}{x}
$$

Chebyshev's Inequality: Let R be a random variable and $x \in \mathbb{R}^{+}$. Then

$$
\operatorname{Pr}(|R-\mathbb{E}[R]| \geq x) \leq \frac{\operatorname{Var}[R]}{x^{2}}
$$

