The following are two sample proofs of the equivalence

$$(A \cap B) \cup (A - B) = A \cap (B \cup (A - B)).$$

One uses the element method. The other uses set algebra.

NOTE: Drawing a Venn diagram of each does not constitute a proof and will not be graded as such.

Element Method

Requirements

- 1. Show the left side of the of the equation is a subset of the right.
- 2. Show the right side of the of the equation is a subset of the left.
- 3. Conclude they are equal.

Proof

Suppose $x \in (A \cap B) \cup (A - B)$. Then either x is in both A and B or x is in A but not B. Either way, x must be in A. Therefore, x must either be in the portion of A that does not overlap with B or the portion that does. So either $x \in A - B$ or $x \in B$. But we also know x is definitely in A, so $x \in A \cap (B \cup (A - B))$. And since x was arbitrary, this is true for all elements in the set, and therefore the set as a whole. This proves the first direction. For the second, suppose $x \in A \cap (B \cup (A - B))$. Then $x \in A$ and $x \in (B \cup (A - B))$. Therefore either x is in B or x is in A but not B. Since x is also in A, x is either in $(A \cap B)$ or (A - B). So $x \in (A \cap B) \cup (A - B)$. This proves the second direction, and as both directions hold, the equality is proven.

Set Algebra

Requirements

- 1. Conversion of one side of the equation to the other (or conversion of both sides to an identical expression) using *stated* laws of set algebra
- 2. Conclusion based on the biconditionality of the steps taken

Proof

$(A \cap B) \cup (A - B)$	
$(A\cap B)\cup (A\cap B^c)$	(Set Difference Law)
$A \cap (B \cup B^c)$	(Distribution)
$A \cap U$	(Complement Law)
A	(Identity Law)
$A\cap (A\cup B)$	(Absorption)
$A\cap (B\cup A)$	(Commutivity)
$A \cap ((B \cup A) \cap U)$	(Identity Law)
$A \cap ((B \cup A) \cap (B \cup B^c))$	(Complement Law)
$A \cap (B \cup (A \cap B^c))$	(Distribution)

All these steps are biconditionally true, therefore the equality holds.